Files
ArchGPUFrontend/CLAUDE.md
2025-09-18 10:10:52 +02:00

270 lines
11 KiB
Markdown

# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Context
This is a NiceGUI-based web platform for testing and managing AI models through Ollama on Arch Linux systems with GPU support. The application serves as an AI model testing environment featuring:
### Core Purpose
A streamlined interface for testing AI models locally, managing Ollama models, and running various AI-related testing tools.
### Main Features:
1. **Model Manager** - Complete Ollama model management interface
- Download, delete, create, and test models
- Support for Hugging Face models via Ollama pull syntax
- Rich model metadata display
- Quick in-app chat testing
2. **System Monitoring** - Resource tracking for AI workloads
- Real-time GPU monitoring (AMD/NVIDIA) to track model performance
- CPU and memory usage during model inference
- System metrics dashboard
3. **AI Testing Tools**:
- **Censor** - Text content filtering/censoring tool for testing AI outputs
- Additional testing tools to be added as needed
4. **Settings** - Application configuration and refresh intervals
## Development Commands
### Running the Application
```bash
# Install dependencies
uv sync
# Run the development server (use port 8081 for testing as 8080 is usually occupied)
APP_PORT=8081 uv run python src/main.py
# Default port (8080) - usually already in use by main instance
uv run python src/main.py
```
### Dependency Management
```bash
# Add a new dependency
uv add <package>
# Add a dev dependency
uv add --dev <package>
# Update dependencies
uv sync
```
## Architecture Overview
### Technology Stack
- **Package Manager**: uv (version 0.8.17)
- **UI Framework**: NiceGUI (async web framework based on FastAPI/Vue.js)
- **Python Version**: 3.13+
- **Ollama API**: Running on localhost:11434
- **Dependencies**:
- `nicegui` - Main UI framework
- `niceguiasyncelement` - Custom async component framework (from git)
- `psutil` - System monitoring
- `httpx` - Async HTTP client for Ollama API
- `python-dotenv` - Environment configuration
### Project Structure
```
src/
├── main.py # Entry point, NiceGUI app configuration with all routes
├── pages/ # Page components (inheriting NiceGUI elements)
│ ├── dashboard.py # Main dashboard with system metrics
│ ├── ollama_manager.py # Ollama model management interface (AsyncColumn)
│ ├── system_overview.py # System information page
│ └── welcome.py # Welcome/landing page
├── components/ # Reusable UI components
│ ├── circular_progress.py # Circular progress indicators
│ ├── header.py # App header with live status
│ ├── sidebar.py # Navigation sidebar with updated menu structure
│ ├── bottom_nav.py # Mobile bottom navigation
│ ├── ollama_downloader.py # Ollama model downloader component (AsyncCard)
│ ├── ollama_model_creation.py # Model creation component (AsyncCard)
│ └── ollama_quick_test.py # Model testing component (AsyncCard)
├── utils/ # Utility modules
│ ├── gpu_monitor.py # GPU monitoring (AMD/NVIDIA auto-detect)
│ ├── system_monitor.py # System resource monitoring
│ ├── ollama_monitor.py # Ollama status monitoring (bindable dataclass)
│ └── ollama.py # Ollama API client functions
└── static/ # Static assets (CSS, images)
└── style.css # Custom dark theme styles
```
### Key Design Patterns
1. **Async Components**: Uses custom `niceguiasyncelement` framework for async page/component construction
- `AsyncColumn`, `AsyncCard` base classes for complex components
- `OllamaManagerPage(AsyncColumn)` for full page async initialization
- Async component dialogs with `await component.create()` pattern
2. **Bindable Dataclasses**: Monitor classes use `@binding.bindable_dataclass` for reactive data binding
- `SystemMonitor`, `GPUMonitor`, `OllamaMonitor` for real-time data updates
3. **Environment Configuration**: All app settings are managed via `.env` file and loaded with python-dotenv
4. **Centralized Routing**: All routes defined in main.py with layout creation pattern
5. **Real-time Updates**: Timer-based updates every 2 seconds for all monitor instances
## Component Architecture
### Monitor Classes (Supporting AI Testing)
- **SystemMonitor**: Tracks system resources during AI model testing
- CPU usage during model inference
- Memory consumption by loaded models
- Disk I/O for model loading
- Process statistics for Ollama and GPU processes
- **GPUMonitor**: Critical for AI workload monitoring
- Auto-detects AMD/NVIDIA GPUs
- Tracks GPU usage during model inference
- Memory usage by loaded models
- Temperature monitoring during extended testing
- Power draw under AI workloads
- **OllamaMonitor**: Core service monitoring
- Ollama service status and version
- Currently loaded/active models
- Real-time model state tracking
### UI Components
- **MetricCircle**: Small circular progress indicator with icon
- **LargeMetricCircle**: Large circular progress for primary metrics
- **ColorfulMetricCard**: Action cards with gradient backgrounds
- **Sidebar**: Navigation menu with updated structure:
- Main: Dashboard, System Overview
- Tools: Censor (content filtering)
- Bottom: Model Manager, Settings
- **Header**: Top bar with system status indicators
### Ollama-Specific Components (AsyncCard-based):
- **OllamaDownloaderComponent**: Model downloading with progress tracking (supports HF models via Ollama's pull syntax)
- **OllamaModelCreationComponent**: Custom model creation from Modelfile
- **ModelQuickTestComponent**: Interactive model testing interface
## Ollama Integration
The Ollama API client (`src/utils/ollama.py`) provides async functions:
- `status()`: Check if Ollama is online and get version
- `available_models()`: List installed models with detailed metadata
- `active_models()`: Get currently loaded/running models
- `delete_model()`: Remove a model
- `model_info()`: Get detailed model information and Modelfile
- `stream_chat()`: Stream chat responses
### AI Model Testing Features:
- **Model Discovery & Management**:
- Browse and pull models from Ollama library
- Support for HuggingFace models via Ollama syntax
- Rich metadata display (size, quantization, parameters, format)
- Time tracking for model versions
- **Testing Capabilities**:
- Quick chat interface for immediate model testing
- Model information and Modelfile inspection
- Custom model creation from Modelfiles
- Real-time resource monitoring during inference
- **Testing Tools**:
- Censor tool for output filtering analysis
- Extensible framework for adding new testing tools
API endpoints at `http://localhost:11434/api/`:
- `/api/version`: Get Ollama version
- `/api/tags`: List available models
- `/api/pull`: Download models
- `/api/delete`: Remove models
- `/api/generate`: Generate text
- `/api/chat`: Chat completion
- `/api/ps`: List running models
- `/api/show`: Show model details
## System Monitoring
### GPU Monitoring Strategy
The application uses a hierarchical approach for GPU monitoring:
1. **NVIDIA GPUs** (via `nvidia-smi`):
- Temperature, usage, memory, power draw
- CUDA version and driver info
- Multi-GPU support
2. **AMD GPUs** (multiple fallbacks):
- Primary: `rocm-smi` for full metrics
- Fallback: `/sys/class/drm` filesystem
- Reads hwmon for temperature data
- Supports both server and consumer GPUs
### CPU & System Monitoring
- Real-time CPU usage and per-core statistics
- Memory (RAM and swap) usage
- Disk usage and I/O statistics
- Network traffic monitoring
- Process tracking with top processes by CPU/memory
- System uptime and kernel information
## UI/UX Features
### Dark Theme
Custom dark theme with:
- Background: `#1a1d2e` (main), `#252837` (sidebar)
- Card backgrounds: `rgba(26, 29, 46, 0.7)` with backdrop blur
- Accent colors: Cyan (`#06b6d4`) for primary actions
- Metric colors: Purple (CPU), Green (Memory), Orange (GPU), Cyan (Temp)
### Responsive Design
- Desktop: Full sidebar navigation
- Mobile: Bottom navigation bar
- Adaptive grid layouts for different screen sizes
- Viewport-aware content scaling
### Real-time Updates
- System metrics update every 2 seconds (configurable via `MONITORING_UPDATE_INTERVAL`)
- Live data binding for all metrics
- Smooth transitions and animations
## NiceGUI Patterns
- **Data Binding**: Use `bind_text_from()` and `bind_value_from()` for reactive updates
- **Page Routing**: Navigation via `ui.navigate.to(route)` with centralized route handling
- **Async Components**: Custom `niceguiasyncelement` framework for complex async initialization
- `AsyncColumn.create()` for async page construction
- `AsyncCard.create()` for dialog components
- `@ui.refreshable` decorators for dynamic content updates
- **Timer Updates**: `app.timer()` for periodic data refresh (2-second intervals)
- **Dialog Patterns**: Modal dialogs with `await dialog` for user interactions
- **Component Layout**: `create_layout(route)` pattern for consistent page structure
- **Dark Mode**: Forced dark mode with custom CSS overrides
## Environment Variables
Configured in `.env`:
- `MONITORING_UPDATE_INTERVAL`: Update frequency in seconds (default: 2)
- `APP_PORT`: Web server port (default: 8080, use 8081 for testing)
- `APP_TITLE`: Application title
- `APP_STORAGE_SECRET`: Session storage encryption key
- `APP_SHOW`: Auto-open browser on startup
## Testing & Development
- Run on port 8081 to avoid conflicts: `APP_PORT=8081 uv run python src/main.py`
- Monitor GPU detection in console logs
- Check Ollama connectivity at startup
- Use browser DevTools for WebSocket debugging
## Current Route Structure
From main.py routing:
- `/` - Dashboard (system metrics for monitoring AI workloads)
- `/system` - System Overview (detailed resource information)
- `/ollama` - Model Manager (primary interface for AI model testing)
- `/censor` - Censor tool (AI output filtering/testing)
- `/settings` - Settings (refresh intervals, app configuration)
### Placeholder Routes (may be repurposed for AI tools):
- `/processes` - Reserved for future AI tools
- `/network` - Reserved for future AI tools
- `/packages` - Reserved for future AI tools
- `/logs` - Reserved for future AI tools
- `/info` - Reserved for future AI tools
## Future Enhancements
- Enhanced model chat interface with conversation history
- Model performance benchmarking tools
- Batch testing capabilities for multiple models
- Output comparison tools between different models
- Integration with more AI model formats
- Advanced prompt testing and optimization tools
- Model fine-tuning interface