# CLAUDE.md This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. ## Project Context This is a NiceGUI-based web platform for testing and managing AI models through Ollama on Arch Linux systems with GPU support. The application serves as an AI model testing environment featuring: ### Core Purpose A streamlined interface for testing AI models locally, managing Ollama models, and running various AI-related testing tools. ### Main Features: 1. **Model Manager** - Complete Ollama model management interface - Download, delete, create, and test models - Support for Hugging Face models via Ollama pull syntax - Rich model metadata display - Quick in-app chat testing 2. **System Monitoring** - Resource tracking for AI workloads - Real-time GPU monitoring (AMD/NVIDIA) to track model performance - CPU and memory usage during model inference - System metrics dashboard 3. **AI Testing Tools**: - **Censor** - Text content filtering/censoring tool for testing AI outputs - Additional testing tools to be added as needed 4. **Settings** - Application configuration and refresh intervals ## Development Commands ### Running the Application ```bash # Install dependencies uv sync # Run the development server (use port 8081 for testing as 8080 is usually occupied) APP_PORT=8081 uv run python src/main.py # Default port (8080) - usually already in use by main instance uv run python src/main.py ``` ### Dependency Management ```bash # Add a new dependency uv add # Add a dev dependency uv add --dev # Update dependencies uv sync ``` ## Architecture Overview ### Technology Stack - **Package Manager**: uv (version 0.8.17) - **UI Framework**: NiceGUI (async web framework based on FastAPI/Vue.js) - **Python Version**: 3.13+ - **Ollama API**: Running on localhost:11434 - **Dependencies**: - `nicegui` - Main UI framework - `niceguiasyncelement` - Custom async component framework (from git) - `psutil` - System monitoring - `httpx` - Async HTTP client for Ollama API - `python-dotenv` - Environment configuration ### Project Structure ``` src/ ├── main.py # Entry point, NiceGUI app configuration with all routes ├── pages/ # Page components (inheriting NiceGUI elements) │ ├── dashboard.py # Main dashboard with system metrics │ ├── ollama_manager.py # Ollama model management interface (AsyncColumn) │ ├── system_overview.py # System information page │ └── welcome.py # Welcome/landing page ├── components/ # Reusable UI components │ ├── circular_progress.py # Circular progress indicators │ ├── header.py # App header with live status │ ├── sidebar.py # Navigation sidebar with updated menu structure │ ├── bottom_nav.py # Mobile bottom navigation │ ├── ollama_downloader.py # Ollama model downloader component (AsyncCard) │ ├── ollama_model_creation.py # Model creation component (AsyncCard) │ └── ollama_quick_test.py # Model testing component (AsyncCard) ├── utils/ # Utility modules │ ├── gpu_monitor.py # GPU monitoring (AMD/NVIDIA auto-detect) │ ├── system_monitor.py # System resource monitoring │ ├── ollama_monitor.py # Ollama status monitoring (bindable dataclass) │ └── ollama.py # Ollama API client functions └── static/ # Static assets (CSS, images) └── style.css # Custom dark theme styles ``` ### Key Design Patterns 1. **Async Components**: Uses custom `niceguiasyncelement` framework for async page/component construction - `AsyncColumn`, `AsyncCard` base classes for complex components - `OllamaManagerPage(AsyncColumn)` for full page async initialization - Async component dialogs with `await component.create()` pattern 2. **Bindable Dataclasses**: Monitor classes use `@binding.bindable_dataclass` for reactive data binding - `SystemMonitor`, `GPUMonitor`, `OllamaMonitor` for real-time data updates 3. **Environment Configuration**: All app settings are managed via `.env` file and loaded with python-dotenv 4. **Centralized Routing**: All routes defined in main.py with layout creation pattern 5. **Real-time Updates**: Timer-based updates every 2 seconds for all monitor instances ## Component Architecture ### Monitor Classes (Supporting AI Testing) - **SystemMonitor**: Tracks system resources during AI model testing - CPU usage during model inference - Memory consumption by loaded models - Disk I/O for model loading - Process statistics for Ollama and GPU processes - **GPUMonitor**: Critical for AI workload monitoring - Auto-detects AMD/NVIDIA GPUs - Tracks GPU usage during model inference - Memory usage by loaded models - Temperature monitoring during extended testing - Power draw under AI workloads - **OllamaMonitor**: Core service monitoring - Ollama service status and version - Currently loaded/active models - Real-time model state tracking ### UI Components - **MetricCircle**: Small circular progress indicator with icon - **LargeMetricCircle**: Large circular progress for primary metrics - **ColorfulMetricCard**: Action cards with gradient backgrounds - **Sidebar**: Navigation menu with updated structure: - Main: Dashboard, System Overview - Tools: Censor (content filtering) - Bottom: Model Manager, Settings - **Header**: Top bar with system status indicators ### Ollama-Specific Components (AsyncCard-based): - **OllamaDownloaderComponent**: Model downloading with progress tracking (supports HF models via Ollama's pull syntax) - **OllamaModelCreationComponent**: Custom model creation from Modelfile - **ModelQuickTestComponent**: Interactive model testing interface ## Ollama Integration The Ollama API client (`src/utils/ollama.py`) provides async functions: - `status()`: Check if Ollama is online and get version - `available_models()`: List installed models with detailed metadata - `active_models()`: Get currently loaded/running models - `delete_model()`: Remove a model - `model_info()`: Get detailed model information and Modelfile - `stream_chat()`: Stream chat responses ### AI Model Testing Features: - **Model Discovery & Management**: - Browse and pull models from Ollama library - Support for HuggingFace models via Ollama syntax - Rich metadata display (size, quantization, parameters, format) - Time tracking for model versions - **Testing Capabilities**: - Quick chat interface for immediate model testing - Model information and Modelfile inspection - Custom model creation from Modelfiles - Real-time resource monitoring during inference - **Testing Tools**: - Censor tool for output filtering analysis - Extensible framework for adding new testing tools API endpoints at `http://localhost:11434/api/`: - `/api/version`: Get Ollama version - `/api/tags`: List available models - `/api/pull`: Download models - `/api/delete`: Remove models - `/api/generate`: Generate text - `/api/chat`: Chat completion - `/api/ps`: List running models - `/api/show`: Show model details ## System Monitoring ### GPU Monitoring Strategy The application uses a hierarchical approach for GPU monitoring: 1. **NVIDIA GPUs** (via `nvidia-smi`): - Temperature, usage, memory, power draw - CUDA version and driver info - Multi-GPU support 2. **AMD GPUs** (multiple fallbacks): - Primary: `rocm-smi` for full metrics - Fallback: `/sys/class/drm` filesystem - Reads hwmon for temperature data - Supports both server and consumer GPUs ### CPU & System Monitoring - Real-time CPU usage and per-core statistics - Memory (RAM and swap) usage - Disk usage and I/O statistics - Network traffic monitoring - Process tracking with top processes by CPU/memory - System uptime and kernel information ## UI/UX Features ### Dark Theme Custom dark theme with: - Background: `#1a1d2e` (main), `#252837` (sidebar) - Card backgrounds: `rgba(26, 29, 46, 0.7)` with backdrop blur - Accent colors: Cyan (`#06b6d4`) for primary actions - Metric colors: Purple (CPU), Green (Memory), Orange (GPU), Cyan (Temp) ### Responsive Design - Desktop: Full sidebar navigation - Mobile: Bottom navigation bar - Adaptive grid layouts for different screen sizes - Viewport-aware content scaling ### Real-time Updates - System metrics update every 2 seconds (configurable via `MONITORING_UPDATE_INTERVAL`) - Live data binding for all metrics - Smooth transitions and animations ## NiceGUI Patterns - **Data Binding**: Use `bind_text_from()` and `bind_value_from()` for reactive updates - **Page Routing**: Navigation via `ui.navigate.to(route)` with centralized route handling - **Async Components**: Custom `niceguiasyncelement` framework for complex async initialization - `AsyncColumn.create()` for async page construction - `AsyncCard.create()` for dialog components - `@ui.refreshable` decorators for dynamic content updates - **Timer Updates**: `app.timer()` for periodic data refresh (2-second intervals) - **Dialog Patterns**: Modal dialogs with `await dialog` for user interactions - **Component Layout**: `create_layout(route)` pattern for consistent page structure - **Dark Mode**: Forced dark mode with custom CSS overrides ## Environment Variables Configured in `.env`: - `MONITORING_UPDATE_INTERVAL`: Update frequency in seconds (default: 2) - `APP_PORT`: Web server port (default: 8080, use 8081 for testing) - `APP_TITLE`: Application title - `APP_STORAGE_SECRET`: Session storage encryption key - `APP_SHOW`: Auto-open browser on startup ## Testing & Development - Run on port 8081 to avoid conflicts: `APP_PORT=8081 uv run python src/main.py` - Monitor GPU detection in console logs - Check Ollama connectivity at startup - Use browser DevTools for WebSocket debugging ## Current Route Structure From main.py routing: - `/` - Dashboard (system metrics for monitoring AI workloads) - `/system` - System Overview (detailed resource information) - `/ollama` - Model Manager (primary interface for AI model testing) - `/censor` - Censor tool (AI output filtering/testing) - `/settings` - Settings (refresh intervals, app configuration) ### Placeholder Routes (may be repurposed for AI tools): - `/processes` - Reserved for future AI tools - `/network` - Reserved for future AI tools - `/packages` - Reserved for future AI tools - `/logs` - Reserved for future AI tools - `/info` - Reserved for future AI tools ## Future Enhancements - Enhanced model chat interface with conversation history - Model performance benchmarking tools - Batch testing capabilities for multiple models - Output comparison tools between different models - Integration with more AI model formats - Advanced prompt testing and optimization tools - Model fine-tuning interface