Files
LivingAgents/llm_connector/llm.py
2025-09-02 04:41:06 +02:00

282 lines
10 KiB
Python

import json
from typing import Union, AsyncGenerator, List, Optional, Dict, Any
import logging
import httpx
from .datatypes import LLMBackend, LLMMessage
logger = logging.getLogger(__name__)
class LLMClient:
"""Client for interacting with LLM APIs"""
backend: LLMBackend
embedding_backend: LLMBackend
timeout: float
def __init__(self, backend: LLMBackend, embedding_backend: Optional[LLMBackend], timeout: float = 30.0):
"""Initialize the LLM client
Args:
backend: LLM backend configuration containing base_url, api_token, and model
"""
self.backend = backend
self.embedding_backend = embedding_backend if embedding_backend else backend
self.timeout = timeout
async def get_embedding(self, text: str) -> List[float]:
"""Get embedding for text
Args:
text: Text to get embedding for
Returns:
List of float values representing the embedding vector
"""
try:
# Use provided model or fall back to backend model
request_params = {
"model": self.embedding_backend["model"],
"prompt": text
}
headers = {
"Content-Type": "application/json"
}
if len(self.embedding_backend["api_token"]):
headers['Authorization'] = f"Bearer {self.embedding_backend['api_token']}"
async with httpx.AsyncClient(timeout=self.timeout) as client:
url = f"{self.embedding_backend['base_url']}/embeddings"
response = await client.post(
url,
headers=headers,
json=request_params,
)
response.raise_for_status()
response_data = response.json()
# Extract embedding from response
if "embedding" in response_data and response_data["embedding"]:
return response_data["embedding"]
else:
logger.error("No embedding data in response")
return []
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error getting embedding: {e.response.status_code} - {e.response.text}")
return []
except httpx.RequestError as e:
logger.error(f"Request error getting embedding: {str(e)}")
return []
except Exception as e:
logger.error(f"Error getting embedding: {str(e)}")
return []
async def get_response(self, messages: List[LLMMessage], stream: Optional[bool]) -> AsyncGenerator[dict[str, Any] | str, Any]:
"""Get response from the LLM
Args:
messages: List of messages to send to the LLM
stream: Whether to stream responses by default
Returns:
Either a string response or an async generator for streaming
"""
try:
stream = stream if stream else False
# Prepare the request parameters
request_params = {
"model": self.backend["model"],
"messages": messages,
"stream": stream,
}
# Prepare headers
headers = {
"Content-Type": "application/json"
}
if len(self.backend["api_token"]):
headers['Authorization'] = f"Bearer {self.backend['api_token']}"
logger.info(headers)
logger.info(request_params)
# Create httpx client
async with httpx.AsyncClient(timeout=self.timeout) as client:
url = f"{self.backend['base_url']}/chat"
if stream:
# Stream the response
async with client.stream(
"POST",
url,
headers=headers,
json=request_params,
) as response:
response.raise_for_status()
async for line in response.aiter_lines():
line = line.strip()
# Skip empty lines and non-data lines
if not line or not line.startswith("data: "):
continue
# Remove "data: " prefix
data = line[6:]
# Check for stream end
if data == "[DONE]":
break
try:
# Parse JSON chunk
chunk_data = json.loads(data)
if "choices" in chunk_data and chunk_data["choices"]:
choice = chunk_data["choices"][0]
delta = choice.get("delta", {})
# Handle reasoning content (for models that support it)
if "reasoning_content" in delta and delta["reasoning_content"]:
yield {'reasoning': delta["reasoning_content"]} # type: ignore
# Handle regular content
if "content" in delta and delta["content"]:
yield {'content': delta["content"]} # type: ignore
except json.JSONDecodeError:
# Skip malformed JSON chunks
continue
else:
# Non-streaming response
response = await client.post(
url,
headers=headers,
json=request_params,
)
response.raise_for_status()
response_data = response.json()
content = ""
# if "message" in response_data and response_data["message"]:
# content = response_data["message"][0]['content']
content = response_data["message"]['content']
logger.info(response_data)
# FIX: Yield as dictionary to match streaming format
if content:
logger.info(content)
yield {'content': content} # type: ignore
except httpx.HTTPStatusError as e:
error_msg = f"HTTP error getting LLM response: {e.response.status_code} - {e.response.text}"
logger.error(error_msg)
yield ""
except httpx.RequestError as e:
error_msg = f"Request error getting LLM response: {str(e)}"
logger.error(error_msg)
yield ""
except Exception as e:
error_msg = f"Error getting LLM response: {str(e)}"
logger.error(error_msg)
yield ""
async def get_structured_response(self, messages: List[LLMMessage], json_format: Dict[str, Any]) -> Dict[str, Any]:
"""Get structured JSON response from the LLM using a JSON schema
Args:
messages: List of messages to send to the LLM
json_format: JSON schema for structured output
Returns:
Parsed JSON response as dictionary
Raises:
ValueError: If the response is not valid JSON
HTTPError: If the API request fails
"""
try:
# Prepare the request parameters with format
request_params = {
"model": self.backend["model"],
"messages": messages,
"format": json_format, # Ollama's structured output parameter
"stream": False,
}
# Prepare headers
headers = {
"Content-Type": "application/json"
}
if len(self.backend["api_token"]):
headers['Authorization'] = f"Bearer {self.backend['api_token']}"
logger.info("Structured request headers: %s", headers)
logger.info("Structured request params: %s", request_params)
# Create httpx client
async with httpx.AsyncClient(timeout=self.timeout) as client:
url = f"{self.backend['base_url']}/chat"
# Non-streaming response only
response = await client.post(
url,
headers=headers,
json=request_params,
)
response.raise_for_status()
response_data = response.json()
logger.info("Structured response data: %s", response_data)
# Extract content from response
if "message" not in response_data or not response_data["message"]:
raise ValueError("No message in response")
content = response_data["message"].get('content', '')
if not content:
raise ValueError("Empty content in structured response")
# Parse JSON content
try:
structured_data = json.loads(content)
logger.info("Parsed structured data: %s", structured_data)
return structured_data
except json.JSONDecodeError as e:
logger.error("Failed to parse structured response as JSON: %s", content)
raise ValueError(f"Response is not valid JSON: {e}")
except httpx.HTTPStatusError as e:
error_msg = f"HTTP error getting structured LLM response: {e.response.status_code} - {e.response.text}"
logger.error(error_msg)
raise
except httpx.RequestError as e:
error_msg = f"Request error getting structured LLM response: {str(e)}"
logger.error(error_msg)
raise
except Exception as e:
error_msg = f"Error getting structured LLM response: {str(e)}"
logger.error(error_msg)
raise
async def _empty_async_generator() -> AsyncGenerator[str, None]:
"""Helper function for empty async generator"""
if False:
yield ""