47 lines
1.4 KiB
Python
47 lines
1.4 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import Dict, List, Optional, Literal, TypedDict
|
|
from datetime import datetime
|
|
from uuid import uuid4
|
|
|
|
|
|
class CharacterTemplate(TypedDict):
|
|
name: str
|
|
observations: List[str]
|
|
reflections: List[str]
|
|
plans: List[str]
|
|
yaml_file: str
|
|
|
|
|
|
@dataclass
|
|
class Memory:
|
|
"""A single memory object with Stanford's architecture"""
|
|
description: str
|
|
creation_time: datetime = field(default_factory=datetime.now)
|
|
last_accessed: datetime = field(default_factory=datetime.now)
|
|
importance_score: int = 5 # 1-10 scale
|
|
embedding: Optional[List[float]] = None
|
|
memory_type: Literal["observation", "reflection", "plan"] = "observation"
|
|
related_memories: List[int] = field(default_factory=list) # IDs of supporting memories
|
|
|
|
def __post_init__(self):
|
|
if self.last_accessed is None:
|
|
self.last_accessed = self.creation_time
|
|
|
|
|
|
@dataclass
|
|
class Character:
|
|
name: str # Still required
|
|
age: Optional[int] = None
|
|
personality: str = ""
|
|
occupation: str = ""
|
|
location: str = ""
|
|
relationships: Dict[str, str] = field(default_factory=dict)
|
|
goals: List[str] = field(default_factory=list)
|
|
_id: str = field(default_factory=lambda: str(uuid4())[:8])
|
|
|
|
def __hash__(self):
|
|
return hash(self._id)
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, Character) and self._id == other._id
|